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Questions of existence and uniqueness of solutions of partial-wave dispersion relations are studied, with
particular attention to the SjD method. The interaction, assumed to be given, is represented by (i) the
strengths and locations of unphysical singularities and (ii) the inelastic partial-wave cross section. A gen-
eralization of the XjD method to include part (ii) of the interaction leads to a nonsingular integral equa-
tion for ImD. This equation is amenable to the Fredholm theory only if there is a correlation between items
{i)and (ii) of the interaction, and only if the increase of inelastic processes at high energies is not too rapid.
Certain Cauchy integrals associated with (i) and (ii) must be nonzero at threshold if there is to exist a solu-
tion with the normal threshold momentum dependence. Thus, there is no solution for any model in which
{i)is constructed from a few partial waves in the two crossed channels. For certain interactions the real part
of the phase shift approaches a multiple of m at large energy, just as in potential scattering. The Castillejo-
Dalitz-Dyson (CDD) ambiguity is analyzed in some detail. A uniqueness theorem is proved which asserts
that if a solution of a particular type exists, it is the only solution of the problem within the class usually
considered. Thus the CDD ambiguity is partially bypassed. In certain cases the unique solution is found
by the ordinary E/D method without subtractions. Some useful results on principal value integrals are ob-
tained. The discussion is carried out for the example of pion-nucleon scattering in the complex plane of u,
the center-of-mass energy. The behavior of the amplitude near m =& (M-m) is derived from crossing sym-
metry.

I. INTRODUCTION

ECENTLY, the partial-wave dispersion relations
have played an important part in discussions of

the strong interactions. ' If the discontinuity of the
amphtude over the unphysical cut (the "left" cut) is
somehow known approximately, the dispersion relation
amounts to a singular integral equation for the ampli-
tude. This equation is replaced by a nonsingular one
through the X/D method. A solution of the latter will

sometimes provide a solution of the former. This role
of the partial-wave dispersion relation has occasionally
been compared to that of the Schrodinger equation in
nonrelativistic quantum theory. However, the analogy
is imperfect. For one thing, the jump over the left cut,
which now takes the part of the interaction Hamil-
tonian, must be specified for each partial wave sepa-
rately. But more important, the existence and unique-
ness theorems that testify to the reasonable nature of
the Schrodinger problem are almost completely lacking.
Solutions can fail to exist if the E/D solution involves a
spurious "ghost" pole not represented in the dispersion
relation. Furthermore, the work of Castillejo, Dalitz,
and Dyson' seems to show that a solution is never
unique (however, compare our Sec. V).

In spite of these essential mathematical differences
it is still desirable to improve the analogy with the
Schrodinger problem, at least in a practical sense. That
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~ G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960},
and papers of Mandelstam cited therein. See also the lectures of
G. F. Chew in Relations Ce disPersion et Particlles elementaires
(Hermann et Cie, Paris, and John Wiley 8z Sons, Inc. , New York,
1960), and recent papers by authors too numerous to mention.

~ L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 1Q1,
453 (1956); hereafter referred to as CDD.

is to say, we should like to know before explicit calcula-
tion whether a particular interaction will lead to a solu-
tion satisfying all known general requirements. Also, we
should like to claim uniqueness of a solution, if possible,
and perhaps to estimate some of its qualitative features
without extensive computations. The purpose of the
present paper is to see how nearly these aims can be
realized. Especially, we try to make the N/D method
more useful and more flexible through a better under-
standing of the mathematical questions involved.

The problem is important not only in the original
Chew-Mandelstam theory, which has had only limited
success, but also in the more ambitious schemes sug-
gested by Mandelstam, ' Ter-Martirosyan, ' Zimmer-
mann, Chew and Frautschi, s %ilson, and others. In
these theories it seems necessary to solve at least the
5-wave dispersion relation. As a result of bad asymptotic
behavior of the approximate interaction term, the
original theory is not strictly consistent. Therefore, it
seems necessary to consider the generalizations. In that
case the approximation of purely elastic scattering must
be abandoned, and the E/D method appropriately
modified. According to Chew and Frautschi, 7 the
partial-wave dispersion relation is to be solved with the
fol1owing two items regarded as given information:
(i) a function f~ which represents the usual contribution
of the unphysical cuts; (ii) a function f which repre-
sents inelastic eBects. f is determined by the partial-
wave inelastic cross section. Ball and Frazer have

3 K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. (U.S.S.R.}
39, 827 {1960)/translation: Soviet Phys. —JETP 12, 575 (1961)j.' W. Zimmermann„Nuovo Cimento 21, 36 (1961}.' G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).
See also reference 7, and G. F. Chew, Lawrence Radiation Labora-
tory Report UCRL-9515 (unpublished}.' K. Wilson (unpublished) ~

~ G. F. Chew and S. Frautschi, Phys. Rev. 124, 264 (1961}.
J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 {1961}.
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shown that item (ii) can be qualitatively important. In
the approximation in which (i) is neglected they showed
that the problem has a very simple solution that can be
stated in closed form. Ball and Frazer also noted that
both (i) and (ii) could be retained in a modified N/D
procedure based on a definition of D due to Chew and
Frautschi. ' However, the resulting linear integral
equation had a singular form involving repeated
principal value integrations.

After establishing notation and stating the problem
precisely in Sec. II, we discuss this generalized A/D
method in Sec. III. It turns out that a careful change of
integration order puts the equation in nonsingular form.
Thus a nonsingular equation for ImD (~ ReS) is
derived from the singular equation for X.The advantage
of beginning with the E equation rather than the D
equation is that eventually only integrations over
physical energies are involved. In the elastic case the
corresponding equation has been employed by Uretsky. '
Our equation has nearly the same form as Uretsky's,
except that the absorption factor g enters in a curious
way. Here q is exp( —2 Imb), 8 being the complex phase
shift. Although the equation has the Fredholm form,
the Fredholm theory applies only if the kernel and
inhomogeneous term are integrable in the square (I.').
This point is investigated in some detail, since the
square-integrability is in doubt if p vanishes at infinity.
Sufficient conditions for an I.~ kernel are derived, and
some restrictions on the interaction terms are dis-
covered. It is found that f~ and f cannot be chosen
independently, in general. Their asymptotic behaviors
must be precisely matched. In the course of this discus-
sion we prove that in certain cases the real part of the
phase shift must approach an integral multiple of m at
infinity, just as in potential scattering. Section III con-
cludes with a derivation of the S equation which is
simpler than the obvious one. It also eliminates an
unnecessary assumption and forms the starting point
for Sec. VI.

Section IV is concerned with conditions necessary for
the existence of solutions. We bring up a point that has
so far not received adequate attention, viz. , the require-
ment that the amplitude have the expected threshold
zeros. We treat the special case of spin 0-spin —,

' scatter-
ing; it is particularly interesting in this respect. (In
fact, throughout the paper we consider just this example. )
A simple argument shows that if the interaction term by
itself has the threshoM zeros, then there is no solution
of the partial-wave dispersion relation with correct
zeros. It follows that any interaction derived from just
a few partial waves in the two crossed channels cannot
lead to a satisfactory solution. This situation is made

9 G. F. Chew and S. Frautschi, Lawrence Radiation Laboratory
Report UCRL-9685 (unpublished). This is evidently a preliminary
version of reference 7. Our de6nition of D agrees with Eq. (5) of
UCRL-9685, while the corresponding equation of the published
paper is in accord with some work of Froissart (cf., reference 28)."J.L. Uretsky, Phys. Rev. 123, 1459 (1961).

comprehensible within the framework of the Cini-
Fubini representation" by showing that a finite number
of partial waves in the direct channel gives a set of poles
of ascending order at the origin in the energy plane.
These pole terms do not possess the threshold zeros, so
if they are included a solution becomes possible. We
reformulate the X/D technique so that the threshold
conditions are automatically satisfied at the expense of
introducing poles at the origin.

In Sec. V we turn to the uniqueness question. We find
that in certain circumstances the ambiguity of Castillejo
et al.' may essentially disappear. In fact, if t,here is a
solution of a particular type, it is the only solution of
the problem within the class of solutions usually con-
sidered. Thus, the possibility of uniqueness depends on
the nature of the interaction. The threshold conditions
help to pin down the solution, and therefore are
analogous to boundary conditions on the wave function
in the Schrodinger theory.

The condition for uniqueness depends on the orbital
angular momentum 3, and becomes less stringent as 1

increases. For l&~ 1, if a solution exists, it is quite likely
to be unique. If l ~&j.and if the equation for ImD without
subtractions has square-integrable kernel and inhomo-
geneous term, the amplitude constructed from its solu-
tion is a unique solution of the partial-wave dispersion
relations provided it has no ghosts.

The topic of Sec. VI is the incorporation of the
CDD ambiguity in the X equation with inelastic
eGects allowed. In the elastic case, Chew, ' Chew and
Frautschi, ~ and Gell-Mann and Zachariasen" have
shown how the so-called "CDD poles" enter the X/D
scheme, and have associated the corresponding free
parameters with the masses and widths of unstable
elementary particles. When inelastic processes are
inc) uded some extra care is necessary in integrating over
singularities, but the result is simple. Only the inhomo-
geneous term of the X equation is altered.

V,'e find that CDD poles correspond to zeros of the
amplitude only below the inelastic threshold. Above the
threshold the amplitude has the value i(1—q)/2k at a
CDD pole, where k is the center-of-mass momentum.

In Sec. VI it is proved that any amplitude has a
particularly elegant X/D representation in which D is
a so-called Herglotz function (generalized Wigner R
function). This generalizes the work of Castillejo et al. to
the cases in which the unphysical singularities may
include branch points as well as poles. The Herglotz D is
not necessarily identical to the usual D, but an explora-
tion of the connection between the two throws light on
the mathematical situation. Part of the work of Sec. VI
depends on the Herglotz D.

In Appendixes A through D we prove some necessary
theorems on the behavior of principal value integrals.

"M. Cini and S. Fubini, Ann. Phys. (N. Y.) 3, 352 (1960)."M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
1961).
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These results might be generally useful in further work
on dispersion relations. Appendix E is concerned with
the behavior of the pion-nucleon partial-wave amplitude
at the points w=&(M t—gg)

where

n(w) =e+(w),
= rg«+g) —(~)

m+z'o
R' g —Ãp

II. PARTIAL-WAVE DISPERSION RELATIONS

%e study the elastic scattering amplitude for a
problem in which the two incoming particles have
masses (resPective sPins) m (0) and M (zr). In other
cases our discussion requires only small changes. In part
of the work, especially Appendix E, we specialize to
pion-nucleon scattering.

Let z and k be the barycentric total energy and mag-
nitude of three-momentum. Then 4skz=(s —(M+ggg)']
Xfs—(M—rgg)sj, where s=w'. The scattering in a
definite isotopic spin state (index suppressed) and
parity-angular momentum state with J=/&2 is de-
scribed by the amplitude

fgy(w) = (ggg~(w) exp)2s Rebgy(w)5 1}/—2ik( w), (II.1)

where 8~+ is the complex phase shift and
= exp( —2 Imbg+); 0~& gag+ & 1.The unitarity condition is

Imfg~ k~ fg~~'——+(1 rgg~')/4—k, (II.2)

fg+(z) = —fgg+gg+( —z) (II.3)

Thus, fg+(w+z0), w&ws, is the scattering amplitude
for E=g——,', while —fg+(—w —s0), w) ws, is the ampli-
tude for l= I+-,'.

It is useful to dehne some abbreviations. Ke write
f(z) =fg+(z) and f(w) =—f(w+s0), whe—re w is understood
to be a real point on I'. Since we assume the Riemann-
Schwarz condition f(z*)= f~(z), it follows from (II.1)
and (II.3) that

f(w) = Lrg(w)ss" g ' —17/2sgg(w), (II.4)

13 W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960}."J.G. Taylor, Nuovo pimento 22, 92 (1961); ¹ Nakanishi,
Phys. Rev. 126, 1225 {1962)."S.W. MacDowell, Phys. Rev. 116, 774 (1960).

for w ~&ws ——M+ggg. We adopt the convention bg+(ws) =0.
In order to avoid trouble from kinematical branch

points, it is best to consider together both amplitudes
having the same J, as shown by Frazer and Fulco. ~

We define a function fg+(z), analytic in the cut-z
plane. The cuts are as follows: (i) the physical cut,
hereafter called I', consisting of two parts of the real
axis (—oo &z& —ws, wgg&z&~); (ii) unphysical cuts
U elsewhere in the plane. There may be isolated poles
as well. The cuts U as given by the Mandelstam
representation are described in reference j.3. However,
the partial-wave dispersion relations may be valid
more generally than the Mandelstam representation. "
In any event, our work is independent of the details of
these cuts, provided they do not intersect the physical
cut. Now fg+(z) satisfies the MacDowellgs" relation

b(w) =Rebg+(w), 'R Qwp
= —Reb &g+g& ( w), w & ws

and gg(w) = k(~ w().
The dispersion relation is taken to be"'~

1 Imf(w)
f(z) =fU(z)+ — dw

where

Here Af(z) is 1/2i times the discontinuity over the cut
U. Af may contain delta functions to account for
possible poles of f The co.nvergence of the integral over
I' is assured by unitarity. The convergence of (11.8) and
the vanishing of the integral over the contour at in6nity
presumably follow from arguments of the Pomeranchuk
type. ' ' Roughly speaking, these arguments show that
the amplitude should have the same asymptotic be-
havior in all directions in the complex plane.

It is instructive to rewrite (I1.7) in various ways. To
emphasize the presence of two orbital states we use
(II.3) and find

fg+(z)=fg+ (z)

Imfg+(w) Imf(g+g)-(w)

Ã —8 w+z

Incorporation of (II.2) shows that the density function

"To ensure the correctness of the usual formula (m —s—ie) '
=P((m —z) ')+orb(m —s) in taking the limit s ~ m it is necessary
to make some statement about the continuity properties of the
density function Imf(m). It is sufBcient to impose the Holder
condition; cf. reference 17, Secs. 16 and 17.A function q (x) is said
to satisfy an H (Holder} condition on a Gnite interval L if

~ s izgl —ylzrl ~
~&A

~
zg —zg

~
&, A )0, 0(gg~& 1, for any two points

x1, x2 of L. We write "q belongs to H" or "q gH. " We assume
explicitly that pQH and BQH; therefore Imf(m)QH. The H
condition is more appropriate for physics than the stronger re-
quirement that the functions have a derivative. The latter condi-
tion fails at least at two-body, S-wave thresholds; e.g., there is a
cusp phenomenon at the x-Z threshold in S-wave ~-A, scattering,
assuming even A.-Z parity. In the case of an in6nite interval L, the
H condition is supposed to hold on any finite subinterval."¹I. MuskheHshvili, Singular Integral EquaÃons (P. Noord-
hoft Ltd. , Groningen, The ¹therlands, 1953).' For the present case we know of no complete proof of a
Pomeranchuk-type theorem (cf., I. Pomeranchuk, Zh. Eksperim.
i Teor. Fiz. (U.S.S.R.) 34, 725 (1958) I translation: Soviet
Physics —JETP, 7, 499 (1958)j). A method that might be
adapted to handle the problem is given by Weinberg in reference
19. It is probably necessary to assume that the amplitude is
uniformly bounded by a polynomial and that the density func-
tions have at most a finite number of zeros.

'9 S. %'einberg, Phys. Rev. 124, 2049 (1961).
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is positive on I'.

1 «(w) i f(w) i'
f(s) =f'(z)+-

1 L1—rP (w)]
+— dw (II.10)

4s i «(w) (w —s)

I is the inelastic region
~
w

~
&w;„, u;„being the threshold

for inelastic events. Finally, we have a form that is
useful in Sec. III.

To prove this, note that D/L) is a function devoid of
singularities in any finite region. Also, D/X) =0(

~
z

~ )
for some ns, by the theorem of Appendix A. Therefore,
D/K) is a polynomial.

When the full notation is substituted for the compact
writing of (III.13), we have

n(s) = n(s; Rebi+, Reb()+, ) )

s "du Reb(+(w)= exp
w (w —z)

1
f(s)=f (s)+f (z)+—

r) (w) sin'b (w)
dw . (II.11)

«(w)(w —s)

s "dw Reb(i+i) (w)
+— (II.14)

w(w+s)

1
f'(s) = dw—

1—r) (w)

2«(w) (w —s)
(II.12)

The behavior at infinity of S is related to that of 8.
If b(w) approaches a constant as

~

w ~~ eo we have the
theorem of Appendix A:

The real part of the function B=f~+fr appears in the
S equation.

When f~ and )) (or equivalently fU and fr) are re-

garded as given functions (II.10) becomes a singular,
nonlinear equation for f(w) in the limit s —+ w+i0 To.
find a corresponding nonsingular and linear equation
we use the X/D representation of Chew and Frautschi'
in which 1/D has ss its phase the function 8(w) defined

by (II.6). X is analytic in the plane with cuts U and I,
while D satisfies D(s*)=D*(s) and is analytic in the
plane cut by I'. X and D may have poles at infinity, but
it is understood that D has no poles superimposed on I'
(however, see Sec. VI). It is not clear that any amplitude
satisfying (II.10) has such a representation. The
possibility of the representation can be proved if 5(w)
is bounded on I'. From here on it will be understood that
we are considering only the class of solutions for which
b(w) is bounded. From the 5 corresponding to a given
amplitude f construct the function S.

s dw b(w) )o(s)=e*pc— (II.13)
r w(w —s)i

We have K)(s*)=K)*(s), a,nd X)(s) is analytic in any
finite region of the plane cut by I'. By (II.4), K—=fK) is
real in the elastic region we& ~w~ &w;„. Since X(z*)
=X*(z), the jump of X over I' is proportional to its
imaginary part and, therefore, zero in the elastic region.
Thus, the example f=X/S shows that any f has an
X/D representation as described. Of course, the de-
composition into E and D is not unique. E and D may
each be multiplied by a common polynomial with real
coefficients. Furthermore, any D that is 0(~s~")" for
some n can be written D=4X), where C is a polynomial.

~We use the symbols 0, o, and ~ in the customary way.
f(x) =Ogg(x) j means that ( f(x) ] ~&Mg(x) for some 6xed 3E and
all x su%ciently close to a given limit. By f(x) = ot g(x)jwe mean
that f(x)/g(x) h 0 as x tends to a given limit, while f(x)~g(x) is
to mean that f(x)/g(x) ~ 1. Thus, D(s)= (I0f")«indicates that
/D f (Mfa/" for ail fs f

)r

&(z)=0(l sI'+')

for all e&0, where trp= b)+(~)+8()+t) (co). See, also,
Eq. (A7). If 5(w) oscillates at infinity, S is still bounded

by a power of
~
s~; cf., Eq. (A9). With (A6) we can deal

with the question of subtractions in the Cauchy integral
representations of X and X). Suppose that 8 approaches
a constant. If p(1, then e can be chosen small enough
to show that X)(s)s )=0(~s~ '), b&0. In that case, X)

satisfies a dispersion relation with one subtraction. If
p&1, additional subtractions are needed; the subtrac-
tion terms involve arbitrary constants which represent
the CDD ambiguity. The case p = 1 also involves a CDD
ambiguity, in general, although the Cauchy integral
may converge with one subtraction. See Secs. UI and
VII for a clarification of this point.

When p&1, the one necessary subtraction does not
imply a lack of uniqueness in the solution of (II.10),
since without restricting the amplitude X) may be given
any desired value (at a point where it is real) through
multiplication by a real constant. On the other hand, we
cannot immediately rule out the possibility of a sub-
traction in the dispersion relation for X. None would be
necessary if f had the unitarity bound in all complex
directions uniformly Li.e., f(s) =0(~s~ ')]. But that is
a stronger statement than is essential for (II.7), and it is
actually unnecessary for the formulation of the X
equation without arbitrary constants, as is shown in the
next section. However, in the next section we first
assume f(s)=0(

~

s
~

') in order to derive the X equation
by the obvious route of eliminating D between the two
dispersion relations for X and D. Later we give a method
which eliminates the unnecessary assumption. The
second method is actually simpler, even if less obvious.

III. N/D METHOD ALLOVfING INELASTIC
PROCESSES

Equation (II.4) implies exp(2ib)=D*/D and X=
(r(D* D)/2i«, where the —functions are all evaluated in
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lent to

dw LReB(w)]'/g(w) & ~ (III.11a)

To handle Rs notice that g(w) has a continuous first
derivative, " and, therefore, 4 (w,w') =p'(u), where I is
some point between m and x'. But"

4R'O'N

n(w)n(w')

so
tt

'
(w) =0 (w ' In Pw),

4(»cos8, »sin8)=0(p 'ln sp),

-w ReB(w) —w' ReB(w')-'
X (m. (III.11b)

Although the mathematical question of the convergence
of these integrals may be quite different in different
cases, it is nonetheless instructive to discuss the matter
in general as far as possible. To this end we Gnd some
sufficient conditions for (III.ila, b) which are probably
almost necessary as well. This has the advantage of
making (III.11b) more comprehensible. Let w ReB(w)
=a+&(w), where the constant o may change when the
sign of w changes. To begin with we assume that p(w)
vanishes at large

~
w~. As shown below, this is actually

necessary for existence of solutions of the dispersion
relation (II 10) if tt=O(ln ~w~), rr)1. Also, &vanishes
in at least one case in which g does not decrease at
all; viz. , the single-nucleon approximation (rl—= 1,
B=f&n"a'). Thus, with @~0, (III.11a) holds if and
only if

dwLw't)(w)]
—'( ~. (III.12)

Let f(w, w') be the integrand of (III.iib). Then it is
necessary and sufficient for (III.11b) that the repeated
integral exist:

dw dw' f(w,w') & ~.

»d» Ltt(» cos8)rl(» sin8)]-'

Therefore, (III.12) is necessary for (III.11b), just to
ensure the convergence of the single integral over m'.
However, it is not sufhcient, as is seen by transforming
to polar coordinates (», 8) First ch.ange from w and w'

to m and 8, and reverse the order of integrations. Then
replace m by r. Both the legitimacy of reversing the
order and the convergence of the double integral are
assured if

where p is the smaller of r cosg, r sing. We use this bound
in R~, and obtain the result that

4&(» cos8, » sin8)=0(» ' 'In ~»)

uniformly for 0~&8~&tr/2. Now if 1/r)(w)=0(w&lnsw),
(III.13) will converge uniformly if n, P, y, 8 are such that

4 (w)/r)(w) =0(ln 'w), s) 1/2.

To summarize, sufhcient conditions for the I.' properties
(III.11a,b) are

(a) y(w)=o(1),

(b) dwLwas(w)] '( ~,
P

(c) tt (w)=0(lwl » 'lwl),

(d) tt (w)/rt (w) =0 (ln '
~
w

~ ), s) 1/2.

The exponents a, P, s in (c) and (d) may be different in
diiferent quadrants of the w, w' plane, and n and P
are to be such that ~w~ ln &~w~ is decreasing. Condi-
tion (b) is also necessary for (III.11a,b).

We do not discuss in detail the complicated situation
that arises if (a) is dropped. In that case, the I.' property
would depend on a cancellation between @(» cos8) and
@(»sin8) in (III.13).That such a cancellation can occur
is illustrated by the example p(w) In lnw. As we show
presently t Eq. (III.14) ff] p may behave as lnw at
worst. With a behavior that strong it is dificult to see
how the kernel could be L'.

To derive restrictions on @, as promised above, we
return to the dispersion relation written in the form
(III.11):

1 tt(w) sin'b(w)
B(s) =f(s) dw —— . (III.14)

tr p K('w z)

From the unitarity bound f(w)=0(~w~ ') and Ap-
pendix D, we have P approaching zero and

4 (» cos8) $(r sin8) '—
r cos8—r sing

(III.13)
1 tt(w) sin'8 (w)

lim w ReB(w)= — dw =a, (III.15)
I tel P K

converges uniformly for 0&~8&~2+. It is sufhcient to
consider the 6rst quadrant. We break it up into
three regions of 8: Rt (0,8), Rs= (8, tr/2 —8), R——s= (tr/2 —8, tr/2), 8(sr/4. Suppose P(w) =0(w— ln Pw),
where a and P are chosen so that w ~ ln Pw is decreas-
ing. Then in Rt and Rs the square bracket of (III.13),
call it C (» cos8, » sin8), is 0(» «t In p»).

"At least wherever dq/dm+H, according to Appendix B. %'e
assume that above some energy there are no points at which
dq/dm does not belong to H.

"From a generalized law of the mean one knows that if f(x)
and g (x) have continuous Grst derivatives, then f(x)/g (x)= f'(8x)/g'(Hx), 0(8(1, provided f(0)=g(0)=0 and the de-
nominators do not vanish for x/0. If

~ f(a)/g(x)
~

&M' for allx(.xo, then
~
f'(x)/g'(x)

) (M for all x(80xo, where f(xo)/g(xo)= f'(80xo) fg'(80xo). I,et f(x) =p(x j) and g(x) =x~ ln t'(x ') to
obtain the desired statement about p'(x).
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provided il sin'8=0(ln ~w~), a)1. Thus, if rl itself is
0(ln—

~w~), n)1, Q vanishes. The strongest possible
asymptotic behavior of @ occurs when g sin'6 approaches
a nonzero constant. In that case, (III.14) and the
theorem of Appendix A show that &=0(inlaw~).

To find a sort of converse to these remarks, we now
look for implications of z ReB being bounded. The
second term on the right of (III.14) is a Herglotz func-
tion (cf., Sec. VII). Therefore, an argument of Wein-

berg, " quoted in Sec. VH, shows that boundedness of
zv ReB implies the convergence of the integral of
(III.15).

If Jr dwg(w)» ' does not converge (as in the elastic
approximation il—= 1), then sin8(~) =sin8( —~)=0,
just as in potential scattering. This is the case in the
Born term model in which the contribution of a single
Feynman graph (exclusive of isotopic spin factors) can
be written as

w ReB(w) = —-'(g'/4m)+0(lnw'/w). (III.16)

Furthermore, there is basis for conjecture that
approaching a multiple of m is a fairly general circum-
stance. In fact, this behavior is certainly present in
situations other than the special case q—= j., m ReB & ~,
as we now prove. The easiest case to analyze is that in
which g is asymptotic to a power of lnw: q(w) c ln ~w'.

For simplicity we assume that c and n are the same at
plus and minus infinity, but this restriction is easily
discarded. Our first remark follows from the preceding
observations: If zv ReB is bounded and n~&1, then
sin8(~) =sin8( —~)=0. If n) 1 the same conclusion is
reached if we add the following assumptions: (i) P/g is
bounded Lbut does not necessarily vanish as required in
(d)j; (ii) 8(w) approaches a constant as jw~ —+ ~. To
prove this we apply the theorem of Appendix D to
(III.14) and find

y(w) =wry sin28/2»+0(ln-M)+X(w),
" dw it sin'8(w)

+ . (III.17)

The point is that x behaves as ln +'m' if one does not
have sin8(~)=sin8( —~)=0. But that would mean
that P/g is not bounded, contrary to hypothesis. To
make explicit the asymptotic behavior of x, we write it
as

(III.18)

There is one further point which is important in the
practical problem of finding suitable approximations for
the interaction functions f~ and fr If .w ReB is bounded
and q=O(ln ~w~), 0)1, the two terms wf~ and wfr
making up z ReB must be individually infinite at large
w. This is apparent in (III.7). The term involving g in
wfr(w) approaches a constant, by the theorem of
Appendix D quoted above. By direct evaluation the
other term is seen to have a logarithmic increase, which
must be canceled by an opposite increase of wf~
Evidently, the question of how to choose approxima-
tions for f~ and fr is a delicate one.

The restriction (III.12) on the rate of decrease of g is
something of a surprise. If (III.12) fails, the existence
of a solution of the integral equation (III.8) is at least
in doubt, although admittedly we cannot rule out
solutions of a type not comprehended by the usual
Fredholm theory. ' Froissart, who has given another
solution of the problem of this section, found a similar
restriction on g. He found it in a diGerent way, however,
and apparently regarded it more as a limitation of his
method than as a hint that no solution may exist if q
falls off too rapidly.

Ke may mention in passing that the method de-
scribed here is somewhat easier to apply than that of
Froissart. Besides, it seems to be a more systematic
generalization of the elastic X/D procedure, and it
throws into an interesting form the question of limita-
tions on g.

In order to drop the restriction f(z)=0(~s~ '), we
consider the function

A(z) =.V(z) —B(z)D(z)

dw ImD(w) ReB(w)
(III.19)

IV. THRESHOLD ZEROS AND EXISTENCE
OF SOLUTIONS

The integral converges, since ImD/w=O(~w~ ), 8)0,
and w ReB=O(lnw') for any B consistent with the
partial-wave dispersion relation. Since its discontinuity
over the cuts vanishes, h. is a polynomial. In fact, it is
identically zero, since limA(w)=0, w~ ~, by the
theorem of Appendix D. Then if we let s —&z+i0 in
(III.19) and take the real part we arrive immediately
at (III.7). Note that the Poincare-Bertrand formula is
not necessary in this proof.

where

t(~)=( + )&wq

In this section, we impose the physically reasonable
requirement that the amplitude have the normal
centrifugal barrier momentum dependence at thresh-
olds. VVhen this restriction is combined with the

Evaluate the limit of the first factor of (III.18) by
I'Hospital's rule. It is equal to —~ 'Lsin'8( —m)
+sin'8(~)$. Again by 1'Hopital, the limit of the second
factor is a nonzero constant, and the proof is complete.

"Some readers may be interested to know that Zaanen treats
Fredholm equations in the general Lebesgue spaces J~: A. C.
Zaanen, I~near 3nalysis (Interscience Publishers, Inc., New
York, 1953}.' M. Froissart, Nuovo Cimento 22, 191 (1961}.
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ds' e.'+'(s', t)—
s —s s —8-

t2rs

+—

+a low-order polynomial in s, g, and t. (IV.1)

Here 8, (+) and 8~(+) are roughly the absorptive parts

unitarity condition, a strong, but different, restriction
on the threshold behaviors of both f~ and 8 is implied.
To see this, consider the function fi+(w) fi—+U(w) in a
state of definite isotopic spin. It has no unphysical
singularities. Equation (II.10) serves to express it as an
integral over I' with a non-negative spectral function
Imfti. (w). It follows that fi+ f2+—~ is monotonically
increasing in the interval —mo&«m&«mo and hence
vanishes at roost once in this interval. Now for l&~ j.,
f2+(w) vanishes at w=&w2 and w=&(M —m); cf.
Appendix E. Consequently, f2+~(w) can vanish at no
more than one of these points. For l=0, f~~(w) can
vanish at no more than one of the two points zv= —wo,
w= —(M—m) at which fbi. (w) vanishes. Equation
(II.11) can be used to show that the same statements
also hold for B(w).

This necessary condition is not fulfilled if, for example,
the Born approximation is used for f2+~(w). It is clear,
therefore, that no ghost-free solution exists for this
model. The conclusion holds for arbitrary, nonvanishing
coupling strength and for arbitrary inelastic effects. Our
remarks don't apply directly to the model considered by
Uretsky" because he treated only the 5 wave, mutilating
the I'j~2 scattering in a way that is inconsistent with our
point of view.

The restriction on threshold behavior can be con-
trasted to the limitations on asymptotic behavior that
also follow from unitarity. A violation of the latter is
often traced to the fact that the discontinuity function
&f increases too rapidly a,t infinity. On the other hand,
the restriction on threshold behavior involves only a
finite number of zeros. Any model that violates only this
restriction can be "corrected" simply by adding to
pi+~(w) a function with only a finite number of poles.
The question of whether these additional poles are
authentic contributions to f2+ (w) must be examined in
individual cases. In the limited class of models based on
the Cini-Fubini representation, " a general answer will
now be given.

In the construction of models, we need the energy-
square variables 8 and t in the two crossed channels.
They are related to s by s+8+$=2M'+2m' and
t= —2k2(1 —cos8), where 8 is the scattering angle in the
s channel. Consider the invariant amplitude A i+'(s, t).
The Cini-Fubini approximation to the Mandelstam
representation is (for pion-nucleon scattering)

A i+'(s, t)

for the s and t channels, respectively. The approxima-
tion consists in treating the dependence on the second
argument of the absorptive parts as a low-order
polynomial, corresponding to the first few partial waves
in each channel. Let pfi+~(w)];+2 be the s-channel
partial-wave projection (taking spin and kinematic
factors into account) of the terms in (IV.1) that have
s' —8 and t' —t denominators. It is well known, and
easily verified by expanding about k'=0 and using the
orthogonality of Legendre polynomials, that such func-
tions have zeros at thresholds. Therefore, if ffi ~(w)]2+2
alone is used as the model for the unphysical singulari-
ties, the necessary threshold property is violated and
there are no ghost-free solutions.

It is easy to construct models which avoid this
difliculty. Let $fi+~(w)7, be the contribution from the
terms in (IV.1) with s' —s denominators. The essential
point is seen more clearly if we neglect spin complica-
tions; then we have

1
[fi+U(w)7. = dw—'(w' w) —' Q(2l'+1) Imfi (w')

r 'to 0

X dx Pi(x)/Pi (1 (k2/k")(1——x))—Pi. (x)7,

(IV.2)

where Pi(z) is a Legendre polynomial. For a finite sum
on /', the right-hand side is analytic as a function of m,
except for poles at m =0, arising from the k-dependent
Pi. Thus, (f2+~(w)], is a rational function. If spin
eA'ects are included, the contribution to )f2+~(w)], from
the (3,3) resonance behaves s,s w~ near w=0 and
doesn't vanish at any threshold. This term is present in
the static model, where it participates in a striking
cancellation. In general, there is no reason for (fi~~(w)],
to vanish at any threshold. Thus models with consistent
threshold behavior are comprehended in the Cini-
Fubini framework. The singularity at zan=0, however,
depends on all waves of the s channel (that are included
in the I' sum), so the calculation of a given partial wave
is no longer decoupled from the remaining ones.

The interdependence of the different partial waves
and the more quantitative restrictions on f~ and 8 will
be brought out by the following discussion.

The point is that for a given AU];+, and 2t, the
threshold requirement implies some relations among
the parameters y„of D'2+~7, =p y„w " ', 22=0, 1,
%lith some courage, the method we propose can be
applied to more general cases, but to keep the motiva-
tion clear, we develop it in the Cini-Fubini framework.

Threshold functions 8i(w) are defined by

82(w)=w2(w+M+m) '(w+M —m) ' (IV.3a)

for /=0, and for /&~1, by

8 (w) —w2l+3 (w2 (M m)2)
—i

X (w —wo)-'(wyw2)'+'. (IV.3b)
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Note that 8&(w)=O(1) for large w. The centrifugal
barrier threshold behavior of f&+(w) is enforced by
applying the E/D method to the function

i&)(w) =8)(w)f& (w) = [8&(w)E(w))D '(w)

and seeking a solution 8((w)E(w) that is Gnite at thresh-
old. The integral equation for

)s(w) = 2 ReE(w) [1+)&(w)]-'

is (suppressing I)
1 «')s(w')

r&(w) &&(w) =ReB (w)+ —dw'
7l p

-w'8(u')8-'(w) ReB(u') —w ReB(w)-
X (IV.4)

where B is a modified interaction function defined by

~y(z) 8(z)
8(w)B(u) =— dz

1 [I-»(w')]8(w')
+— dw' . (IV.5)

2s ~ &&'(w' —w)

Now 8 and B diGer by an additive rational function
which need not vanish at any threshold. In fact, B has
the centrifugal barrier zeros and, therefore, e or X
does. ' ' However, unless some accidental cancellation
occurs, the resulting solution f=h8-' wi11 have poles at
m =0 in addition to any that might already be present in
fo The new p. oles (similar to ghosts) amount to a modi-
fication of the coef6cients y and are not objectionable
to the extent that the y„are considered ambiguous.

The expression for 8 can be simplified considerably if
we write Af=[Df];+,+[hf],. Since [f];+, has the
centrifugal barrier behavior already, the Cauchy rela-
tion for 8(w)[f(w)];+& shows that

where the I are defined here in terms of the y . Due to
8, the F depend on p only for r&)21+3 —5«) T. hat is,
the y„ for n ~& 2l+3—8~0 do not enter into the integral
equation. The low-order poles of [J], are constructed
by the E/D method through the zeros of 8 and, in
effect, the coeKcients y„ for n~&21+3 b&o

—are auto-
matically assigned values that yield the proper thresh-
old behavior. For example, take J=—', (1=0) and assume

y /0 for N=O, 1, 2, and 3. This includes contributions
from the (3,3) state and second mE resonance in the
s channel. Then

Fo= y2(3I2 —y&)2)
—'+23' y3(~2 —yg2)

—2

(Iv.g)
F)= —y))(M' —&»') '

and I' =0 for m &~ 2. The calculation of a given partial-
wave is independent of the calculation of the remaining
ones in the same channel to the extent that the solution
may not be sensitive to higher values of n.

V. A UNIQUENESS THEOREM

%e choose to admit only scattering amplitudes that
have the proper threshold zeros, that are uniformly
bounded by a polynomial as m approaches infinity in
any complex direction, and which have phase shifts with
real parts approaching finite constants for large m.

Suppose f~&') and f&~&" are two such functions that
satisfy the partial-wave dispersion relation with the
same given f&+o, )&&+, and»«+)) . We seek conditions
under which the difference g(w)= f&+&')(w) —f&+&')(w)
vanishes identically.

Now g(s) is analytic except for the two cuts com-
prising P and perhaps poles if f&+&» and f&+&') have
distinct bound states.

The boundary values of g(z) are given by

lim g(z) =)&&+(w)k-'(w)
z~w+i0

Xexpi Re(5&+")+8&+&")

dz 8(z)(s—w)
—'[af (z)]~,

and
Xsin Re(8&+&') —8(+"&), (V.ia)

g(z) = —n(4-()-(w)& '(w)= 8 (w) [f(w)]r+( (IV.6) . «w(o-
The contribution from [bP„wher e

[f(w)].=E ~-w " ',

Xexpi Re(8(&+)) &')+5((+,) &'&)

X»n Re(8«+» "'—8&(+»-"'), (V.lb)

can be written as

8(z)P X(s)].
8z

- v. d" /8(z)

- «!d'!«—«) . .
F w ««1 (IV.7)

where w)wo and 8&"=8")(+w) is the phase shift of
f"', i =1, 2. Using I) we construct C (z) as

C (z) = g (z) X)(z; Re(8&+&')+5&+&')),

Re(8(&+,) &'&+ 8((,» &'&))

XQ(z—w»"') (z—u a"'). (V.2)

~~ Even though I/81 behaves as co~—(M—m)~ at ~=~ (3E—nc),
the amplitude f1+(~) constructed by the method described will
have the correct behavior foP —(M—m}~j'I~ found in Appendix E,

provided only that the given discontinuity Af is proportional to
oP—(N —m)g'~~ near ~(3f—m). This is because g(on)E(co) in-

volves the term J'dshf(z)8(z)D(z)/(z —au) which has a singu-
larity of the type p- (&-~)~j-II~.
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q & q+n(')+n(2) —1. (V 4)

For if y&q+n("+n(" —j., there is a contradiction of
the statement )C(z)(=O(~z('+"&"+"") '+') because 6

can be taken so small that

q+n")+n(2) 1+&(—p.

To 6nd a lower bound on y, we evaluate the number
of known zeros of g(z). The centrifugal barrier behavior
of both f&" and f&" implies that g(z) has an /th order
zero at u)= wa, and an (1+1)th order zero at u)= —u)0.

Such a behavior follows from the Mandelstam repre-
sentation (see Appendix E) and is demanded in any
theory in which the forces are limited in range. In
addition, crossing symmetry and unitarity imply zeros
at the other roots i)&= & (3f n&) of k'(w) —=0. In fact,
g(z) has a zero at w= —(M—m) for all /, and a zero
at 3f n& for l&0, a—s shown in Appendix E. From (V.1)
g(z) has a zero on f' at each point where Re(8~"& —8~(2))
or Re((&&&+i) &"—i)&(+» &'&) passes through an integral
multiple of m. On the right-hand physical cut there are
at least z '(

~
ReL&1(+")(0&) )—h(+(') (~ )j ~ } zeros of this

kind, where (C} is "the greatest integer less than C."
At this point, we 6rst complete the proof under the

restrictive assumption that there are no bound states,
or, more generally, that the bound-state poles of f&'& and
f"' coincide in position and residue. Then

z» 2fy 1+ (2 S«)—
+ '(IRet. b'( "'(")—&+"'(")3I}
+z' '{~ReL5&(+» "'(~)—&1&~» "'(~)]~}. (V.5)

For notation see (II.14). The coincidence of Wa") with
any bound-state poles of f&" and the phase conditions
on g and X) ensure that C has no singularities in any
6nite region. For large s, X) is uniformly bounded by a
polynomial (Appendix A). Since we assume f"' and

f&'& are uniformly bounded by a polynomial for large z,

g(z) is also. Hence, ~C'(z)
~
=0(~z~ ") for some integern&,

and by a familiar theorem C (z) is a polynomial. Let z
be the degree of C. Because of the Holder condition on
Reb, the exponent in the de6nition of S is 6nite for all
6nite 2', including real values on E. Hence L} and X) '
have no 6nite zeros and the zeros of C are identical with
those of g. The number of these zeros is y. The re-
mainder of the proof consists of 6nding upper and lower
bounds on y.

The upper bound depends on the limiting values
Reb»+(~)=lim Reb)+(w). Then for large, real u»,

~
$(w+i0)

~

=O(w&)+'), where

(7=ir—'Ret &)&+&')(~)+&)(~&2)(~)

+b((+»-")(~)+&((.()-")(")»
and e is any real number greater than zero. If f" has
n(') bound-state poles, all distinct, the polynomial factor
in (V.2) gives a power behavior of degree n&"+n'2'
for large zo. Finally, the unitarity condition gives

~
g(w+i0)

~

=0 (w ') and we have

The inequalities Eqs. (V.4) and (V.S) can be solved
to 6nd a relation for 8"}and 5"' separately. If we set

and

ReL~(+"'(")—b(+"'("))=~,

the algebra can be done in the form a&&~ (z~+ )y~—x—y &~ 0. The inequality ~ &~ 0 reads

If there are at least two admissible solutions of the
partial-wave dispersion relation which are free of
bound states, then (V.6) is a necessary condition on
any such solution. Since g(z) —=0 is the only alternative
to (U.6), we have a kind of uniqueness theorem: A
solution that contradicts (V.6) is the only admissible
solution without a bound state.

Is there ever an admissible solution without bound
states that contradicts (V.6)P For /&0 the answer is
likely to be yes. In fact, if p does not decrease too
rapidly, an admissible solution constructed from an J'
solution of the iV/D equation (III.9) will have the
desired property, provided it has no bound state.
Suppose that (7(w) ~w~

—+ ~ as ~w~
—+ ~, where

0&o.(1.Since x&L' means that J~ dw»(w)n'(w) & ~,
it follows that n'(w) ~w~' ~=0(1). Since ImD= ~n, —
the Cauchy representation of D and the work of
Appendix D show that D=0(~ w

~

"+ '").Since D=4 X),

where C is a polynomial, we can conclude from Appendix
A, Eq. (A7), that p (1and (V.6) is contradicted. If /= 0
the same argument does not quite suKce. However, if
one finds n(w)=O(~w~ ), o)-'„ then p(zi and the
corresponding solution is a unique 1=0 solution in the
class considered.

If there are two solutions f&", f"', and each has
n=n&"=n&" bound states, then (V.6) is replaced by
p&*&~&1+1 '', h(0 n—-If th—e l.atter inequality is violated
by some solution, it is the only solution with n bound
states. A better theorem for the situation in which
bound states are allowed seems possible only if we can
claim additional zeros of g (z). One basis for doing thi=- is
provided by the assumption that the residue of a bound-
state pole has a definite sign; i.e., f")=R&)(w&)&"—w) '
near w=w&)"), where Rz)0. Then f"& must have a
zero between consecutive poles. The number of such
zeros in g(z) depends on p= ~n") n"&

~

be—cause g(z)
need not vanish between adjacent poles of f ') and
f"&.The counting is complicated by the fact that such
zeros might coincide with the ones at r()=&(M—m)
already counted. In any case, there are at least
&&
—3+2b„0+5„i+b(0 additional zeros. Altogether, the



G. FRYE AND R. L. KARNOCK

minimum estimate for y is

y&~ 2l+1+ (2—8)o)

+n '{IReB)+"'(~)—~)+"'(~)jl)
+n '{IReg«+)) —"'(~)—~«+))-"'(")jl)

+ I»"'—»"'I+28oo+bol+~)o 3 (V 2)

threshold. Thus, ImDQH on P, which means that the
Cauchy representation of D and the function A. are both
well-defined for z;=m, . Now, A. has zero jump over the
cuts U and I', so its only singularities are the poles of D
which make their appearance in the —BD term of
(III.19). D now takes the form

The inequalities (V.5) and (V.7) can be put in the form
oo'~& lgl+ Iyl+p —x—y —(» ' —»" ) &~0. Thus, forboth
i =1, 2 we have

D(z)=1+z Q —— dw
z-~ Z —z

z»(w)
(VI.1)

w (w —z)

'«[~)+"'( )+b()+ )-"( )3+»"'
&~ I—-', +&,o+,6,)

1 (V.S)

The connection with potential scattering is in-
teresting. In this case, our inequality becomes 8)(oo)
&~ or (—,'f—1—»z) where»z is the number of bound states.
On the other hand, I.evinson's theorem" states that
5) ( oo) = —or»z. Thus, there is a contradiction for
l&~3. Either there is a unique, admissible solution of
the partial-wave dispersion relations of potential theory
for /~&3, or else our assumption about the sign of
bound-state residues is not acceptable.

There is another slight extension. If additional param-
eters are granted, in the form that f)+ (both f)+")
and f)+"') has a prescribed value at h different points,
then g(z) has h additional zeros at these points, and an
added term 2h is implied on the righthand sides of Eqs.
(V.6) and (V.S).

VI. CASTILLEJO-DALITZ-DYSON AMBIGUITY

To include the CDD ambiguity in the X equation we
generalize the method described at the end of Sec. III.
For this purpose we deine functions X and D with the
same restrictions on asymptotic behavior as the E and
D of that section. Of course, the new functions have
poles. Amplitudes in the class for which»or & p ((»+1)n.
have a decomposition )Vo/Do in which Do has no poles
and is O(lzl "+' ') i))0. Do differs from I) of (II.13) by
at most a multiplicative constant. Now D= Do/p, where
p=Q; )"(z—z,), is O(lzl' —'). If we introduce the
corresponding numerator function A =Do/p, the func-
tion A(z) of (111.19) can be constructed. A is well defined
if the z; do not lie on I'. But for amplitudes in the class
»)r (p ((»+1)or there are n points w, at which sinf) (w, )
=ImDo(w;)/

I Do(w;) I
=0; (we set aside for the moment

the case p=»)r). It is convenient, and in accord with the
work of Castillejo et ul. , to let the z; approach m;. Then
since ImDo(w;) =0, the limit z; ~ w, causes no trouble
in the dispersion relation for D. In fact, we know from
Appendix 3, Lemma A, that ImDo/(w —w, ) satisfies a
Holder condition near w; provided that db/dw does. We
assume that indeed dh/dw&H near w;. The assumption
is certainly reasonable if m; is not an S-wave, two-body

~9
¹ I.evinson, Kgl, Danske Videnskab. Selskab, Mat. -fys,

Medd. 25, No. 9 (1949};R. Haag, Nuovo Cimento 5, 203 (195/).

where —z»(w) = ImD(w) and

c;=c;*=Do(w;)[w; g (w;—w,)]-',

Do(0)UI( —w~)] '= 1.

If »=1, then c)——Do(w))/w). When (VI.1) is substituted
in (III.19) one sees that

» c,w; ReB(w;)
A(z) = —P (VI.2)

The 2e real parameters c;, zo;, are to be regarded as
completely arbitrary unless they are associated with un-
stable elementary particles with known masses and
widths. "" According to (III.1) and (III.2), the
condition ImDo(w, )=0 means that f(w) =o(1—ri)(2z) '.
The CDD points correspond to zeros of the amplitude
only below the inelastic threshold.

If p=»or there may be only» —1 finite points w; at
which sinb(w, )=0. In that event (VI.3) does not
necessarily hold, and we must resort to the more subtle
analysis of Sec. VII. According to the remarks preceding
(VII.6), any amplitude" of the class»n~& p((n+1)or
has an X/D decomposition in which"

c; 1 z»(w)-
D(z) =1+z A++ —— dw —,(VI.4)

where A=A*, and either A or one of the c; is zero.
The zA term may be regarded as a CDD pole at
infinity. It may be nonzero only if p=»or, s,nd it need

Hl That is, any amplitude for which the phase h(m} does not go
through a multiple of ~ an ininite number of times.

"We shall suppose that n(x)QH. This does not follow from
the work of Sec VII. It presumably is implied by bc'm)QH, but
we shall not try to prove that here,

In (VI.2) let z~w&P and take the real part. The
result is a simple modification of (111.7):

w ReB(w) —w; ReB(w~)
))(w)»(w) = ReB(w)+ P c,

I K—K

-w' ReB(w') —w ReB(w)-
+— dw' —»(w') . (VI.3)
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not be present in that case if s '[b~+(w)+h~~+~& (w)]
approaches p=es from above. Now when (VI.4) is
substituted in (III.19) we must somehow guarantee the
convergence of the integral in (III.19). An integration
by parts shows that one has convergence if

CDD pole at inhnity implies only one arbitrary con-
stant, but in general two are involved. Note that equa-
tion (VI.7) is of Fredholm type only if the last term on
the right side is zero and the factor multiplying A
decreases rapidly enough at large x.

u ReB(w) =O(1), (VI.Sa) VII. THE HERGLOTZ DENOMINATOR
alld

~ [w ReB (w)]'
~

dw = & ~ . (VI.Sb)

1
lim —w ReB(w)A+ g(w)e(w) —— du'—

w ' ReB(w') —w ReB(w)—
&&e(w') (~. (VI.6)

Condition (VI.Sa) is normally expected, as is indicated
by the discussion of Sec. III. Equation (VI.Sb) follows
from (VI Sa) and the condition g (w) =0 (ln ~

~
w

~ ),a) 1,
according to (III.17). In any event, let us suppose that
the integral of (III.19) converges, either through
satisfaction of (VI.S) or otherwise. Then A(s) is a
rational function as before. A(w) is o(w ), 0&n(1, and
since it is rational it must be bounded for all ~w~

greater than some 8'. Its value at infinity is

It is interesting to observe that the partial-wave
scattering amplitude can always be factored in the form
1V/D in such a way that D is a so-called Herglotz func-
tion. A function H (s) analytic in the upper half plane is
called a Herglotz function" if it has the property

ImH (z) &~ 0, Ims) 0.

The Wigner R function E(s) is a special case in which
R(s) is also meromorphic in the complete z plane. "
Herglotz functions, or generalized R functions, have
been studied in the theory of moments, '4 the theory of
electrical circuits, " the analysis of Low's scattering
equation, ' 6eld theory, " and in the proof of the
Pomeranchuk theorem. "%e collect here the principal
properties of Herglotz functions.

Theorem. If H(s) is analytic in the half-plane Ims) 0,
and if ImH(s)&~0 for Ims)0, then there exists a
bounded nondecreasing real function n(w) such that

g(w)e(w)

=ReB(w)+A[w ReB(w) —lim w ReB(w)]

w ReB(w) —w; ReB(w, )

K

+— dw' —e(u')
-w' ReB(w') —w ReB(w)-

If the limits of the two terms of (VI.6) exist separately,
our integral equation for n may be written

H(z) =As+c+ da(w) (1+ws) (w —s) ', (VII.1)

where A and c are real and A ~&0. Moreover,

lim s 'H(s)=A,

when z ~ ~ along any direction not parallel to the real
axis.

It follows that H(z*) =H*(s), ImH (s) )0 for Ims) 0
and H(z) has no complex zeros. Note that —H—'(s) is
also Herglotz. If ImH(w) vanishes for real w in some
interval —p(w&p, then t'w 'dn(w) exists and Eq.
(VII.1) can be put in the form'r

1
X lim q(w)e(w) —— dw' —e(w') H(z)=H(0)+As+s dP(w) w '(w —s) ', (VII.1a)

-w' ReB(w') —w ReB(w) where dp(w) = (1+w') dn (w). Weinberg" has shown that
at least one of the integrals

The last term on the right of (VI.7) may or may not be
zero, depending on the rate of decrease of e(w) at
infinity. But according to the construction of D in
terms of S in Sec. VII, the large w behavior of e(w)
depends on the rate at which 7r '[b~+(w)+5~~+~~ (w)]
approaches nm. If the approach is rapid, the last term
in (VI.7 is zero and only 2e 1CDD para—meters enter.
If the approach is slow, the full complement of 2n CDD
parameters may enter (VI.7), even only 2e—1 appeared
in (VI.4). Thus, for a restricted class of amplitudes the

w-'dP (w), w—'iH(w+f0)
i

—
'dp(w),

~ A. Herglotz, Her. Verhandl. Sachs. Akad. Wiss. Leipzig, Math
Naturw. Kl. 63 (1911).

~ E. P. Wigner, Ann. Math. 53, 36 (1951).
34 J. A. Shohat and J. D. TamarkiII, The Problem of 3foments

(American Mathematical Society, New York, 1943);cf., especially
p. 23."P.I. Richards, Quart. J.Appl. Math. 6, 21 (1948);T. T. Wu,J. Math. Phys. 3, 262 {1962).

3 K. Symanzik, J. Math. Phys. 1, 249 (1960), Appendix B.
'7 Cf., reference 2, Eq. (2.13).
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TABLE I. Topological types.

Type

T(+—)
T(—+).(++)
T(——)

&0
&0)0
g0

&0
&0
&0
&0

0
0—1

+1

—1
+1—1
+1

(2J,2I)~E
state

(empirical)

(1,1) E
(3,1)¹'
(3,3) ¹

(1 3)

if b~+ is positive just above threshold, or

—tr&~$i~(w) &0 (VII.3b)

if it is negative there. A systematic characterization can
be made if we distinguish four cases according to the
signs of $i+ and E'«+t& .We call these "topological types"
and denote them by r(++), etc. , as shown in Table I.
%e don't know that there is any signi6cance to this
classi6cation, but it is interesting to note that, empiri-
cally, each type occurs once in J= 1/2, 3/2; I= 1/2, 3/2
pion-nucleon scattering.

Ke now de6ne the Herglotz denominator explicitly in
terms of X). To avoid confusion with other definitions
we designate it by H.

H( )=s( aaz)" $(s; bi+, b«+iI ), (VII.4)

where 0 =+1 and eo
——0, &1 as indicated in Table I, and

u is some arbitrary real point in the interval—we&~ a&~we. For as=1, H(a) =0 and a could be taken
as the energy of a bound state if there were one;
otherwise, jar(a) must vanish also. H has the following
properties:

"It is interesting that in the case of pure elastic scattering 8
is just the argument p of the partial-vrave amplitude: kf=sinb
Xexp(is) = ~if~exp(+). + jumps by +x whenever sinz vanishes.

must converge. Symanzik" and steinberg'9 have shown
that if Di(s)=Dr*(s*) is uniformly bounded by a
polynomial and is analytic except for singularities
on the real axis and if its spectral function ImDi(w+i0)
has at most a finite number of zeros, then Di(s)
=R(z)H(z), where R(z) is a rational function and H(s)
is Herglotz.

To demonstrate the existence of a Herglotz de-
nominator we examine all points on I' at which Re8
passes through an integral multiple of w. Corresponding
to the continuous phase Reb&+, let us de6ne 5&+ by"

$i~(w) =Remi~(w) xP—; e(w —w, )
+zr P; 0 (w —w~), (VII.2)

where w;, j=1, 2, ~, j(max), Lresp. w;, i=1, ~ ~ ~,

i(max)] are the energies at which Rebi+ goes up (resp.
down) through an integral multiple of zr, and O~(w)
=-', (1+ lwlw '). We assume i(max) and j(max) are
finite. It is easy to see that

0& $i~(w) & w,

ImH (s) =RLexp ReJ(z)] sinL8+Im J(s)].

The factor exp ReJ(s) is positive definite in the upper
half-plane because J(z) is analytic there. In order to
show that 0&8+ImJ(z) &x, we parametrize 8 as
follows: Let s=u+in, then

Hence,

I—8 to

8= 2x —tan ' dwlw+zl-'
0

—8i+(w) w+8&r+tI-(w)
8+ImJ(s) =— dw +

lw+zl'

+s dwl w+zl

The inequality (VII.3b) for r( —) and the—restriction—a&&ws ensure that 8+ImJ (z) &0 for v&0. An upper
bound is established by replacing each phase by its
extreme value and extending the lower limit of the third
integral to —mo. Therefore, for a&~ Mo,

8+ImJ(s) &e dwlw+zl-'=rr.

This concludes the proof for r( —). The other ca—ses
can be handled similarly. The remaining properties are
easy to verify.

~The expression "except for logarithmic factors B(z) z~"
means precisely that Z(z) =zz exp'(z) where (X(z) ( (z In(z( for
all z such that (z(&R(e) and for any e&0; cf., Appendix A,
Eq. (A~r).

(i) H(s) is analytic in the cut plane;
(ii) H(z") =H'(z);

(iii) ImH(z)&0, Ims&0;
(iv) for real s= w, ImH(w+i0) &~0 on I';
(v) H(w) has a pole with positive residue at w=w;.

j=1, , j(max);
(vi) at w=w;, i=1, , i(max), ReH(w) and

ImH(w)/ReH(w) vanish;
(vii) if Reb(w) tends to a finite constant for large w,

then except for logarithmic factors H(z) s' for large s,
where —1&~ q & 4,39

(viii) We define n(w) by ImH (w+i0) = z(w—)rz(w);
then rz(W) &~0 on P and for large w, zz(w) =o(1); zz(w)
is not necessarily square integrable. In both cases (v)
and (vi), rz(w)/H(w) vanishes.

Note that at 8; as well as at to; the amplitude has the
value f=i(1 rI)/2—x Prop. erties (i) and (iii) show that
H is in fact Herglotz. We now prove (iii) for type
r (——), in which H has the form H (z) = (z—a) expJ(s),
where J(z) is the integral in the definition of S, Eq.
(II.14). Setting z =a+A exp(i8), we have
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for small k. To lowest order in 8s, the amplitudes A &~'

s,nd B&+&(s,l, t) = KB&+&(&&,s,t) are given by

A&~&(ss, t) =4r(2M+m) (2M)—'(a(&)+ib(&)k)
—8xmMc(&) (E2a)

The proof of this theorem given by Widder4' can be
adapted in a straightforward manner to 6t the principal
value case. One 6nds that G(t) = o(t) implies

a& (x) t a+a&

tP dx — &o(x)dx

(] g) j x
plus terms of order bs, where

and

'"+' x&p(x) B&+&(&&,s, t)=47r(2M) '(a(&)+ib(a)k)
dx= o(1), +8irMc(&), (E2b)

where e&0 is arbitrarily small.

APPENDIX E

Evaluation of the Amplitude Near
w= a (M —m)

%e use crossing symmetry to evaluate the ampli-
tude f&+(w), rather than just its discontinuity, near
w= & (M—m). The essential point can be seen in terms
of the Legendre projection A&&+&(s) of the invariant
amplitude A &+& (s,s, t) =&A &+'(a,s,t).~ This is

A&&+& (s)=+ dx P&(x)

XA &+&(2AP+2m2 —s+2k'(1 —x), s, —2k'(1 —x)), (E1)

where in the barycentric system of the crossed channel
8=2M'+2m' —s+2k'(1 —x) is the square of the tot'al

energy and z= 1+t(2k') ' is the cosine of the scattering
angle. The magnitude of the barycentric three-momen-
tum k is expressed in terms of 8 in the same way that k is
expressed in terms of s. For s in some domain in the
complex s plane, it can be shown that 8&~(M+m)' and
that z lies within the I.ehmann ellipse for all x in the
interval —1&~@&~1. We need only the more limited
result that for real s in 0&~s~& (M—m)', 8&&(M+m)',
and —1~& z~&1 for all relevant x. It is, therefore, per-
missible to expand A &+'(s,s, t) in terms of partial waves
of the 8 channel.

We set s= (M—m)' —bs and keep only the leading
terms in hs. Then

b= (M+m)'+bs[1+2n:M(M —m) '(1—x)j+0[(bs)'],
and

k=mM(M' —m') '(2bs)'&'

X[(M'+m') (2Mm) '—x]'n+0(bs).
We take into account unitarity in the 8 channel; for a
state of de6nite isotopic spin I= ~, ~, we have

f&g&r&(8) =a(I, /&)k" (1—ia(I, t&)k"+')—'

=a(I, I&)k2&+ia'(I /&)k4'+'

4'D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, New Jersey, 1941), Chap. 5, Sec. 5, Lemma 5.~ The discussion of this Appendix is restricted to pion-nucleon
scattering. The notation is that of Frazer and Fulco, reference 13

2 (a(-'„0+)
—1 ka(32, 0+)

—1)(s'&-,'0+&)

and c(~) are related to the four p-wave scattering
lengths a(I, 1&). To this order z does not enter. The
final form is best given in terms of f&s. (w).

Let w=M m bw, —then—s= (M—m)' —bs+0[(bs)')
(for small Ro)0) where bs= 2(M —m) Ro. Now f&+(w) is
expanded in terms of A &&~'(s) and B&'+& (s) by

f&~ (M m bw)— —
=2M[16&r(M —m)] 'fA&[(M —e)'—bs]

mB&[(M mj' bs])+0(bw) (E3)

It is remarkable that f&+(M m bM) =—f&
—(M m bw)— —

+0(bw). Inserting (E1), a corresponding relation for
B&&~& (but with the & inverted), and (E2) into (E3),
we have~

M+m
f~&+& (M —m —bw) =~ a(a) b&p

M —m

where

dx P&(x)[(M'+m') (2mM)-' —x]'&'

The value near w= —M+m is given by the MacDowell
symmetry. It is very interesting that the behavior for
every / is given in terms of the S-wave scattering lengths,
alone.

It is easy to verify that the Mandelstam representa-
tion implies the behavior k ' and k '+ at the physical
thresholds m o and —m 0. Expand Mandelstam de-
nominators containing cos8 in terminating Taylor series.
A partial-wave projection then gives the result, after a
straightforward justi6cation of the changed order of
integrations. This procedure fails for s= (M —m)' be-
cause the Mandelstam denominator b' —[2M2+2eP —s
+2k'(1 —cose)j vanishes for s'= (M+m)'

44 (E4) does not agree with some unproved statements about
the behavior near & C'3f —re) in reference 13.


